De Novo Synthesis of 2-Substituted syn-1,3-Diols via an Iterative Asymmetric Hydration Strategy

Md. Moinuddin Ahmed, Matthew S. Mortensen, and George A. O'Doherty*
Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506
george.odoherty@mail.wvu.edu

Received June 10, 2006

The enantioselective syntheses of several protected 4-substituted syn-3,5-dihydroxy carboxylic esters have been achieved from the corresponding achiral (E, E) - or (E, Z)-1,3-dienoates. The route relies upon an enantio- and regioselective Sharpless dihydroxylation and a palladium-catalyzed reduction to form γ-substituted δ-hydroxy-1-enoates. The resulting δ-hydroxy-1-enoates are subsequently converted into benzylidene-protected 4 -substituted syn-3,5-dihydroxy carboxylic esters in one step. The benzylideneprotected 3,5-dihydroxy carboxylic esters are produced in good overall yields (20-54\%) and high enantiomeric excess ($73-97 \%$ ee).

Introduction

As part of our continuing program focused on the de novo asymmetric synthesis of polyketide-based natural products, ${ }^{1}$ we developed a sequential hydration approach (enantioselective hydration of $\mathbf{1}$ to $\mathbf{2}$ and a diastereoselective hydration of $\mathbf{2}$ to $\mathbf{3}$) that converts achiral conjugated dienoates into enantiomerically enriched benzylidine-protected syn-3,5-dihydroxyesters. ${ }^{2}$ The transformation relies upon a Sharpless asymmetric dihydroxylation followed by a $\mathrm{Pd}-\pi$-allyl catalyzed allylic reduction to control both the regio- and enantioselectivity of the first hydration and an Evans hemiacetal addition to achieve diastereoselectivity in the second hydration. ${ }^{3}$

With the successful application of this approach to various 1,3-polyol natural products, we targeted the structurally more complex polyene-polyol macrolides (e.g., mycoticin A ${ }^{4}$, Figure 1). Thus we required a strategy that would address two structural

[^0]

FIGURE 1. Asymmetric hydration approach to mycoticin A
motifs of mycoticin A. That is to say, we required access to both 2-methyl-1,3-diol ($\mathrm{C}-11$ to $\mathrm{C}-17$) ${ }^{3,4}$ and δ-hydroxy- γ methyl enoate (C-27 to C-31) subunits. Other approaches to δ-hydroxy- γ-methyl enoate synthons usually involve crotylation/ metathesis, aldol/Wittig, or vinylogous aldol sequences; a few other more diverse strategies have been employed in recent years, as well. ${ }^{5}$ Unfortunately, our initial studies on a new catalytic asymmetric approach using various carbon nucleophiles to install an alkyl group at C-4 was met with little success (i.e., replacing the palladium hydride with a palladium alkyl in the $\mathrm{Pd}-\pi$-allyl intermediate 5).

Alternatively, we envisioned that these two structural features could be prepared from C-4 substituted achiral dienoates by an iterative hydration approach (Scheme 1). This, of course, required that the initial asymmetric hydration reaction be stereospecific, which was demonstrated by substituting $\mathrm{DCO}_{2} \mathrm{H}$

SCHEME 1. Asymmetric Iterative Hydration of C4-Methyl Dienoates

for $\mathrm{HCO}_{2} \mathrm{H}$ (Scheme 1, $\mathrm{R}_{3}=\mathrm{H}$; see Supporting Information). Then, we embarked on an effort to expand the asymmetric hydration methodology to include substituted dienoates (1) for the preparation of the 4-methyl-5-hydroxyenoates (2) and the benzylidine-protected 4-methyl-3,5-dihydroxy esters (3) via the substitution of cyclic carbonates $\mathbf{4}$ and Pd- π-allyl intermediates 5. ${ }^{6}$ Herein, we describe the successful development of a de novo asymmetric synthesis of these two structural motifs (2 and 3) from simple achiral dienoates (1).

SCHEME 2. Asymmetric Double Hydration of (E, E)-Dienoate

While we were initially concerned about the problems associated with enantio- and regioselectivity in both the osmium and palladium steps, the initial dienoates we chose to study ($\mathbf{6}$ / b) proved to be very promising (Scheme 2). ${ }^{7}$ Thus, exposure of dienoates $6 \mathbf{a}$ and $\mathbf{6 b}$ to Sharpless dihydroxylation conditions proceeded uneventfully (Table 1), providing diols 7a and 7b in good yields and excellent enantioselectivity. Similarly, the resulting diols were diastereoselectively converted to homoallylic alcohols $\mathbf{8 a}$ and $\mathbf{8 b}$ by conversion to a cyclic carbonate and reduction with $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCO}_{2} \mathrm{H}$ (Table 2). ${ }^{8}$ Finally, both homoallylic alcohols $\mathbf{8 a}$ and $\mathbf{8 b}$ were readily converted into the

[^1]TABLE 1. Asymmetric dihydroxylation of ($\boldsymbol{E}, \boldsymbol{E}$)-Dienoates

$\begin{array}{\|l\|} \hline \mathrm{AD}^{*}=1 \% \mathrm{OsO}_{4}, 5 \% \text { Ligand, 3eq } \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6} \text {, 3eq } \mathrm{K}_{2} \mathrm{CO}_{3} \\ 3 \text { eq MeSO } \mathrm{NH}_{2}, 0.2 \mathrm{M} t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1), 0^{\circ} \mathrm{C} \text {-RT } \end{array}$					
entry	R	ligand	yield (\%)	$\begin{gathered} \text { ee }^{a} \\ (\mathbf{1 1}) \end{gathered}$	$\begin{gathered} \text { ratio }^{b} \\ (\mathbf{1 1 : 1 2}) \end{gathered}$
a	$\mathrm{CH}_{2} \mathrm{i} \mathrm{Pr}$	$(\mathrm{DHQ})_{2} \mathrm{PHAL}$	82	86	(1:1)
		DHQ-4-Me-2-Quin	75	73	($>99: 1$)
b	$i \operatorname{Pr}$	(DHQ) 2 PHAL	88	60	(1.6:1)
		DHQ-4-Me-2-Quin	60^{c}	80	(16:1)
c	Ph	(DHQ)2 ${ }^{\text {PHAL }}$	77	d	(1:2.5)
		(DHQD) $\mathbf{2}^{\text {PHAL }}$	78	d	(1:2.5)
		DHQ-4-Me-2-Quin ${ }^{e}$	60	90	($>99: 1$)
d	Me	(DHQ) ${ }_{2} \mathrm{PHAL}$	65	96	($>99: 1$)
		(DHQD) $2_{2} \mathrm{PHAL}$	68	99	($>99: 1$)
6a	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OTBS}$	(DHQ) 2 PHAL	68 (7a)	94	($>99: 1$)
		$(\mathrm{DHQD})_{2} \mathrm{PHAL}$	70	98	($>99: 1$)
6 b	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OBn}$	$(\mathrm{DHQ})_{2} \mathrm{PHAL}$	71 (7b)	97	$(>99: 1)$
		(DHQD) $2_{2} \mathrm{PHAL}$	73	99	($>99: 1$)

${ }^{a}$ Determined by chiral HPLC. ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c} 3$ equiv of NaHCO_{3} used as buffer. ${ }^{d}$ ee of minor isomer not determined. ${ }^{e} 2 \%$ Os, 10% ligand.
benzylidine-protected syn-3,5-dihydroxyester $9 \mathbf{a}$ and $9 \mathbf{b}$ by exposure to the Evans conditions (PhCHO, cat. KOt-Bu, Table 3).

TABLE 2. Diastereoselective carbonate reduction

		$\mathrm{Pd}(0)=1 \% \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}, 1 \% \mathrm{PPh}_{3}, 5 \mathrm{eq}$$\mathrm{NEt}_{3} \text {, 5eq } \mathrm{H}_{2} \mathrm{CO}_{2}, 0.2 \mathrm{M} \mathrm{THF} \text {, reflux } 10-40 \mathrm{~min}$		
entry	R	yield, \% (13)	yield, \% (14)	$\mathrm{dr}^{\text {a }}$
a	$\mathrm{CH}_{2} \mathrm{i} \mathrm{Pr}$	90	96	>95:5
b	i PR	84	98	>95:5
c	Ph	91	98	>95:5
d	Me	90	98	>95:5
e	$\mathrm{Me}\left(\right.$ ent-1) ${ }^{\text {b }}$	90	98	>95:5
7 a	$\left(\mathrm{CH}_{2}\right) \mathrm{OTBS}$	71 (13f)	95 (8a)	>95:5
7 b	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OBN}$	88 (13g)	96 (8b)	>95:5

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{b}$ Dienoate subjected to (DHQD) ${ }_{2}$ PHAL.

Unfortunately, when we investigated the scope of this reaction sequence we uncovered complications with the dihydroxylation step (Table 1). The simplest dienoate substrate (Table 1, entry $\mathrm{d}, \mathrm{R}=\mathrm{Me})^{9}$ underwent dihydroxylation using $(\mathrm{DHQ})_{2} \mathrm{PHAL}$ and (DHQD) $)_{2}$ PHAL with excellent enantio- and regioselectivity; however, the regioselectivities were diminished for branchedalkyl and aryl substituents (Table 1, entries a-c). ${ }^{10}$ For instance, when dienoate 10c $(\mathrm{R}=\mathrm{Ph})$ was dihydroxylated with the PHAL-linked dimeric ligands, the α, β-olefin 12c was preferentially formed (2.5:1). To our delight, switching to a "first-
(8) Lower yields for the TBS series were due to minor loss of the TBS group in the carbonate-forming step.
(9) Carreira has prepared $\mathbf{1 9}$ by a three step sequence from $\mathbf{6 d}$, see: ref 7a.
(10) The regioselectivity of the asymmetric dihydroxylation of di- and trienoates has been studied by Sharpless and our group, see: (a) Berker, H.; Soler, M. A.; Sharpless, K. B. Tetrahedron 1995, 51, 1345. and (b) Zhang, Y.; O'Doherty, G. A. Tetrahedron 2005, 61, 1345-1376.

TABLE 3. Diastereoselective hydration of $\boldsymbol{\delta}$-Hydroxyenoates

entry	R	yield, \% (15)	dr
a	$\mathrm{CH}_{2} \mathrm{i} \mathrm{Pr}$	75	90:10
b	$i \mathrm{Pr}$	57	89:11
c	Ph	33	90:10
d	Me	63	90:10
8a	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OTBS}$	58 (9a)	88:12
8b	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OBn}$	69 (9b)	89:11

generation" dihydroxylation ligand, DHQ-4-Me-2-quinolyl ether (DHQ-MEQ), eliminated this problem and gave the desired diol with excellent selectivity in all three cases (entries a-c, Table 1) with greatly improved regio- (>16:1) and enantioselectivity ($73-90 \%$ ee) for the diols 11a-c.

The palladium-catalyzed reduction proved to be very tolerant to a variety of functionalities, giving excellent yields and selectivities in all cases. As with the diols $\mathbf{7 a} / \mathbf{b}$, the diastereomerically pure diols $11 \mathbf{a}-\mathbf{e}$ were converted into the corresponding cyclic carbonates 13a-e (Table 2) in excellent yields using triphosgene and pyridine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. We next examined the Pd catalyzed reduction of the (E, E)-allylic carbonates 13a-e. After some experimentation it was found that the optimal conditions were $1 \% \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3} / \mathrm{PPh}_{3}$ in THF with 5 equiv of $\mathrm{Et}_{3} \mathrm{~N} \cdot$ $\mathrm{HCO}_{2} \mathrm{H} .{ }^{11}$ In all case the carbonates were cleanly converted into homoallylic alcohols in excellent yields ($>95 \%$). It is worth noting that we have been able to use this procedure for the preparation of multigram quantities of 14b (i.e., several 10 g batches).

Both to demonstrate the synthetic utility of this oxidation/ reduction sequence and to assign the stereochemistry of the asymmetric hydration reaction, the homoallylic alcohols $\mathbf{1 4 a}-\mathbf{d}$ were converted into the 1,3 -syn diols $\mathbf{1 5 a}-\mathbf{d}$. Thus exposure of alcohols 14a-d to the Evans 1,3-syn diol protocol provided the benzylidine-protected syn-3,5-dihydroxyesters $\mathbf{1 5 a}-\mathbf{d}$. With

TABLE 4. Asymmetric dihydroxylation of (E,Z)-Dienoates ${ }^{a}$

${ }^{a} \mathbf{1 7}$ is major from DHQD ligands whereas (ent)-17 is major from DHQ ligands. ${ }^{b}$ Determined by chiral HPLC.

[^2]SCHEME 3. Shi Epoxidation of (E, Z)-Dienoates

the exception of the phenyl-substituted substrate $\mathbf{1 4 c}$, the benzylidine acetals were formed in good yields ($57-75 \%$, Table 3). ${ }^{12}$

We next set out to test the stereospecificity of the overall transformation ($\mathbf{6 / 1 0}$ to $9 / 15$). To do so we chose the (Z, E) -methyl-substituted dienoate $\mathbf{1 6}$ (cf., Table 4 and Scheme 3). Once again the initial dihydroxylation proved to be problematic. While no regioisomers were detected, the enantioselectivities were unsatisfactory using the PHAL-linked dimeric ligands (Table 4, entries 1 and 2).

We again turned to the DHQ-MEQ ligand, but this time we were met with lower ee (Table 4, entry 3). A screening of commercially available AD ligands was conducted in which the optimum ligand was determined to be (DHQD) ${ }_{2} \mathrm{PYR}$ (Table 4, entry 4). ${ }^{13}$ In an effort to further increase the enantioselectivity, a Shi epoxidation ${ }^{14}$ was attempted on 16 (Scheme 3). Indeed, epoxide 19 was formed in greater enantioexcess and was subjected to identical Pd-reduction conditions as the carbonate 18. Both $\mathbf{1 8}$ and $\mathbf{1 9}$ behaved similarly in the reaction giving excellent dr with the epoxide opening having higher yield (98\% vs 86%). Finally, the conversion of 20 to the anti-methyl diastereomer 21 occurred in 80% yield and diastereoselectivity ($>95: 5$) via the Evans protocol. ${ }^{15}$

In summary, we have demonstrated the utility of our asymmetric bis-hydration methodology for the stereospecific conversion of both (E, E)- and (E, Z)-dienoates into either C-4 diastereomer of benzylidine-protected syn-3,5-dihydroxy esters (9, $\mathbf{1 5}$ and 21). ${ }^{9}$ Key to this development was the control of regioselectivity in both the osmium-catalyzed asymmetric dihydroxylation and palladium-catalyzed reduction reactions. Further development to improve the enantioselectivity of the oxidation of the (E, Z)-dienoates and its application toward natural product synthesis is ongoing.

Experimental Section ${ }^{16}$

General Procedure for Dihydroxylations. Into a round-bottom flask containing $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (3 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv), $\mathrm{MeSO}_{2^{-}}$ NH_{2} (3 equiv), and (DHQ) $)_{2}$-PHAL ($5 \mathrm{~mol} \%$) was added $t-\mathrm{BuOH}$ and water ($1: 1,0.2 \mathrm{M}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 min , and then to this solution was added $\mathrm{OsO}_{4}(1 \mathrm{~mol} \%)$ immediately

[^3]followed by addition of dienoate. The reaction was stirred vigorously at $0{ }^{\circ} \mathrm{C}$ for $2-18 \mathrm{~h}$. Ethyl acetate was added to the reaction mixture followed by quenching with solid sodium sulfite. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration the crude mixture was purified by silica gel column chromatography.
(+)-(E,4S,5S)-Ethyl 7-(tert-Butyldimethylsilyloxy)-4,5-dihy-droxy-4-methylhept-2-enoate (7a). After flash column chromatography ($30 \% \mathrm{EtOAc} / \mathrm{hexanes}$) the reaction yielded 380 mg (68\%) of diol as a clear, colorless oil. $R_{f}=0.10$ (4:1 hexanes/EtOAc), $[\alpha]^{24}{ }_{\mathrm{D}}+5.2\left(c 0.61, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR (neat, $\left.\mathrm{cm}^{-1}\right) 3459$ (br), 2932, 2859, 1713, 1658, 1469, 1369, 1257, 1183, 1089, 987, 941, 836, 778, $728 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 6.99(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.11(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~m}, 2 \mathrm{H})$, 3.74 (dd, $J=6,6 \mathrm{~Hz}, 1 \mathrm{H}), 1.99$ (brs, 2H), $1.71(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 166.6,152.3,120.2,77.2,74.6,62.5,60.3$, 32.2, 25.7 (3C), 22.8, 18.0, 14.1, -5.6 (2C); HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}+\mathrm{Na}\right]^{+} 355.1911$, found 355.1909.
(+)-(E,4S,5S)-Ethyl 7-(Benzyloxy)-4,5-dihydroxy-4-methyl-hept-2-enoate (7b). After purification by flash column chromatography (50% EtOAc/hexanes) the diol was obtained in 71% yield as a clear, colorless oil. $R_{f}=0.11$ ($4: 1$ hexanes/EtOAc), $[\alpha]^{24} \mathrm{D}$ $+5.2\left(c 2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR (neat, $\left.\mathrm{cm}^{-1}\right) 3461(\mathrm{br}), 2931,2860,1715$, 1453, 1367, 1282, 1186, 1095, 1031, 987, 698; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $600 \mathrm{MHz}) \delta 7.35(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.11(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.75(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 1 \mathrm{H}), 1.81$ $(\mathrm{m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $150 \mathrm{MHz}) \delta 166.5,152.0,138.1,128.5$ (2C), 127.9, 127.7 (2C), 120.3, 76.7, 74.6, 73.5, 69.2, 60.4, 30.2, 22.8, 14.2; HRMS (ESI) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}+\mathrm{Na}\right]^{+} 331.1515$, found 331.1516.
(-)-(E,4S,5S)-Ethyl 4,5-Dihydroxy-4,7-dimethyloct-2-enoate (11a). After purification by flash column chromatography (50% $\mathrm{EtOAc} /$ hexanes) the reaction yielded 44 mg (75%) of diol as a clear oil with no detectable regioisomer. $R_{f}=0.15$ (4:1 hexanes/EtOAc), $[\alpha]^{24}{ }_{\mathrm{D}}-21.7\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat, $\left.\mathrm{cm}^{-1}\right) 3460,2957,2870$, 1701, 1656, 1466, 1368, 1307, 1282, 1189, 1034, 988, 869, 766, 743,$652 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 6.95(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.10(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.56$ (ddd, $J=10.8,4.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.53 (brs, 1 H), 2.31 (brs, 1 H), $1.80(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{ddd}, J=13.8,10.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.20$ (ddd, $J=13.8,10.2,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 166.6,151.9,120.6,75.4,74.7,60.5,39.7$, 24.6, 23.8, 21.8, 21.2, 14.1; HRMS (ESI) calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{4}+\right.$ $\mathrm{Na}]^{+} 253.1410$, found 253.1402 .
(-)-(E,4S,5S)-Ethyl 4,5-Dihydroxy-4,6-dimethylhept-2-enoate (11b). After purification by silica gel column chromatography (30% EtOAc/hexanes) the reaction yielded 72 mg (60%) of diols as a 16:1 mixture of regioisomers. $R_{f}=0.11(4: 1$ hexanes $/ \mathrm{EtOAc}),[\alpha]^{24}{ }_{\mathrm{D}}$ $-3.0\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR (neat, $\left.\mathrm{cm}^{-1}\right) 3448,2962,2874,1698$, 1655, 1467, 1368, 1303, 1279, 1179, 1096, 1031, 984, 869, 725, $679 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 6.89(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.99(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{dd}, J=$ $4.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 1 \mathrm{H}), 1.95$ (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.86$ (m, $1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ $166.8,153.4,120.2,80.1,75.6,60.7,29.0,23.1,22.0,16.6,14.4$; HRMS (ESI) calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}$239.1253, found 239.1249.
(+)-(S,E)-Ethyl 4-Hydroxy-4-((S)-hydroxy(phenyl)methyl)-pent-2-enoate (11c). After purification by flash column chromatography ($50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) the reaction yielded 490 mg (60%) of diol as a clear, yellow oil. $R_{f}=0.10$ (4:1 hexanes/EtOAc), $[\alpha]^{24}{ }_{\mathrm{D}}$ +15.7 (c 1.2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat, cm^{-1}) 3436, 2981, 1699, 1656, 1453, 1368, 1304, 1278, 1182, 1094, 1026, 985, 910, 868, 721, $700 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.33(\mathrm{~m}, 5 \mathrm{H}), 7.01(\mathrm{~d}, J=$
$15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 1 \mathrm{H}), 1.28$ (t, $J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 166.5$ $151.8,138.9,128.2,128.1$ (2C), 127.5 (2C), 120.5, 79.2, 75.5, 60.4, 22.9, 14.1; HRMS (ESI) calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}$273.1097, found 273.1091
(+)-(E,4R,5S)-Ethyl 4,5-dihydroxy-4-methylhex-2-enoate (17). After purification by flash column chromatography ($30 \% \mathrm{EtOAc} /$ hexanes) the reaction yielded $153 \mathrm{mg}(64 \%)$ of diol as a clear, colorless oil. $R_{f}=0.10$ ($4: 1$ hexanes/EtOAc), $[\alpha]^{24}{ }_{\mathrm{D}}+2.5$ (c 1.00, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat, cm^{-1}) 3434 (br), 2980, 2936, 1699, 1655, 1449, 1368, 1303, 1276, 1181, 1090, 1033, 985, 920, 887, 729; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 6.97(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (brs, 1 H), 2.28 (brs, 1 H), $1.31(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, 1.17 (dd, $J=6.6,1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ 166.7, 150.0, 121.2, 75.6, 74.0, 60.7, 24.6, 18.2, 14.4.

General Procedure for Carbonate Formation. To diol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{M})$ in an ice bath was added pyridine (5 equiv). Triphosgene (1.1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.4 M , total reaction concentration equals 0.2 M) was added via syringe, and the reaction was allowed to stir for 5 min until determined complete by TLC (UV, PMA stain). The reaction was diluted with diethyl ether and was placed in a separatory funnel. The crude mixture, including salts, was washed vigorously with a saturated aqueous CuSO_{4} solution until all salts dissolved. The layers were then separated, and the organic layer was washed with brine. After separation the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude mixture was then purified by flash column chromatography.
(+)-(E)-Ethyl 3-((4S,5S)-5-Isobutyl-4-methyl-2-oxo-1,3-diox-olan-4-yl)acrylate (13a). The crude mixture was purified by flash column chromatography (20% EtOAc/hexanes) to yield carbonate in 90% yield as a clear, colorless oil. $R_{f}=0.26$ (4:1 hexanes/ EtOAc), $[\alpha]^{24}{ }_{\mathrm{D}}+35.6\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR (neat, cm^{-1}) 2961, 1799, $1719,1663,1468,1385,1367,1309,1280,1232,1177,1088,1063$, 1013, 982, 870, 774; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 6.85(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=10.8,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H})$, $1.46(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150\right.$ $\mathrm{MHz}) \delta 165.3,153.2,144.0,122.3,84.15,82.0,61.0,37.4,25.1$, 23.1, 21.5, 19.2, 14.1; HRMS (ESI) calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}$ 279.1202, found 279.1204.
(+)-(E)-Ethyl 3-((4S,5S)-5-Isopropyl-4-methyl-2-oxo-1,3-di-oxolan-4-yl)acrylate (13b). The crude mixture was purified by flash column chromatography (20% EtOAc/hexanes) to yield carbonate in 84% yield as a clear, colorless oil. $R_{f}=0.22$ (4:1 hexanes/ EtOAc), $[\alpha]^{24}{ }_{\mathrm{D}}+18.3\left(c\right.$ 1.0, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ IR (neat, cm^{-1}) 2973, 1801, 1720, 1663, 1472, 1368, 1281, 1245, 1175, 1109, 1062, 1027, 982, 839, 774; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 6.84(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.20(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~d}$, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 165.6,153.1,144.5,123.0,89.1,84.5,61.2$, 28.2, 19.8, 19.1, 18.7, 14.3; HRMS (ESI) calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{5}+\right.$ $\mathrm{Na}]^{+}$265.1046, found 265.1050.
(-)-(E)-Ethyl 3-((4S,5S)-4-Methyl-2-oxo-5-phenyl-1,3-diox-olan-4-yl)acrylate (13c). The crude mixture was purified by flash column chromatography ($20 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to yield carbonate in 91% yield as a clear, colorless oil. $R_{f}=0.21$ (4:1 hexanes/ EtOAc), $[\alpha]^{24}{ }_{\mathrm{D}}-24.9\left(c 1.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ IR (neat, cm^{-1}) 2984, 1802, 1718, 1663, 1456, 1367, 1308, 1288, 1245, 1180, 1088, 1069, 1044, $1028,979,771,700 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.43(\mathrm{~m}, 3 \mathrm{H})$, $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.47$ (s, 1H), 4.26 (qd, $J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.32$ (t, $J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 165.3$, 153.0, 144.5, 132.2, 129.5, 128.9 (2C), 125.5 (2C), 122.6, 85.2, 84.4, 61.1, 20.9, 14.1; HRMS (ESI) calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}$299.0889, found 299.0897.
(+)-(E)-Ethyl 3-((4S,5S)-4,5-Dimethyl-2-oxo-1,3-dioxolan-4yl)acrylate (13d). The crude mixture was purified by flash column chromatography ($20 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to yield carbonate in 90% yield as a clear, colorless oil. $R_{f}=0.25$ (4:1 hexanes/EtOAc), $[\alpha]^{24} \mathrm{D}$ +12.7 (c 1.00, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat, cm^{-1}) 2987, 2941, 2301, 1821, 1726, 1664, 1446, 1390, 1348, 1312, 1235, 1183, 1086, 1034, 868, 774, 630; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 6.86(\mathrm{~d}, J=16.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.15(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 165.3,153.1$, 144.0, 122.3, 84.1, 79.6, 61.0, 19.1, 14.3, 14.1; HRMS (ESI) calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}$237.0733, found 237.0726.
(-)-(E)-Ethyl 3-((4S,5S)-5-(2-(tert-Butyldimethylsilyloxy)-ethyl)-4-methyl-2-oxo-1,3-dioxolan-4-yl)acrylate (13f). The crude mixture was purified by flash column chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to yield carbonate in 71% yield as a clear, colorless oil. $R_{f}=0.50$ (4:1 hexanes/EtOAc), $[\alpha]^{24}$ D $-52.2\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) 2956, 2858, 1813, 1723, 1665, 1469, 1388, 1309, 1258, 1179, 1088, 1033, 982, 835, 777, 721; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta$ 6.89 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J$ $=9.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~m}, 2 \mathrm{H}), 1.87$ (m, 2H), 1.49 (s, 3H), $1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06$ ($\mathrm{s}, 3 \mathrm{H}$), $0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 165.3,153.1$, 144.1, 122.2, 83.9, 80.3, 61.0, 58.5, 32.1, 25.8 (3C), 19.6, 18.2, 14.1, -5.5 (2C); HRMS (ESI) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Si}+\mathrm{Na}\right]^{+}$ 381.1703, found 381.1718.
(-)-(E)-Ethyl 3-((4S,5S)-5-(2-(Benzyloxy)ethyl)-4-methyl-2-oxo-1,3-dioxolan-4-yl)acrylate (13 g). The crude mixture was purified by flash column chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to yield carbonate in 88% yield as a clear, colorless oil. $R_{f}=0.23$ ($4: 1$ hexanes/EtOAc), $[\alpha]^{24}{ }_{\mathrm{D}}-23.8$ (c 2.3, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat, cm^{-1}) 2985, 2863, 1810, 1720, 1662, 1556, 1495, 1454, 1382, 1188, 1090, 985, 773,$741 ; ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.35(\mathrm{~m}, 3 \mathrm{H}), 7.31$ $(\mathrm{m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=27.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{dd}, J=12.6,6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.48(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$ $\delta 165.3,153.0,144.1,137.5,128.4$ (2C), 127.8, 127.7 (2C), 122.2, 84.0, 80.5, 73.4, 65.4, 61.0, 29.6, 19.5, 14.1; HRMS (ESI) calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{6}+\mathrm{Na}\right]^{+} 357.1308$, found 357.1290.
(-)-(E)-Ethyl 3-((4R,5S)-4,5-Dimethyl-2-oxo-1,3-dioxolan-4yl)acrylate (18). The crude mixture was purified by flash column chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to yield carbonate in 89% yield as a clear, colorless oil. $R_{f}=0.20\left(4: 1\right.$ hexanes/EtOAc), $[\alpha]^{24} \mathrm{D}$ -30.2 (c 0.65, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat, cm^{-1}) 2985, 2940, 1793, 1717, $1662,1594,1448,1387,1367,1310,1287,1225,1180,1097,1074$, $1000,905,870,773,732,685 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 6.76$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=6.6$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$ $\delta 165.4,153.3,142.1,123.2,84.4,81.9,61.2,24.4,16.1,14.3 ;$ HRMS (ESI) calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}$237.0733, found 237.0736.

General Procedure for Pd-Catalyzed Carbonate Reduction. To a flask containing carbonate in THF (0.2 M) were added Pd_{2} (dba) $\cdot{ }_{3} \cdot \mathrm{CHCl}_{3}(1 \mathrm{~mol} \%), \mathrm{PPh}_{3}(1 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}$ (5 equiv) and finally formic acid (5 equiv). The reaction was then refluxed for 20-40 min at which time it was determined complete by TLC (UV, anisaldehyde). The reaction was then allowed to cool to room temperature, diluted with ether, and filtered through a plug of silica gel to remove $\operatorname{Pd}(0)$ before concentration. The crude mixture was then concentrated and subjected to flash column chromatography.
(-)-(E,4S,5S)-Ethyl 7-(tert-Butyldimethylsilyloxy)-5-hydroxy-4-methylhept-2-enoate (8a). The crude mixture was concentrated and subjected to flash column chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to yield δ-hydroxy enoate in 95% yield as a clear, colorless oil. $R_{f}=0.45(4: 1$ hexanes $/ \mathrm{EtOAc}),[\alpha]^{24} \mathrm{D}-16.5$ (c $0.63, \mathrm{CH}_{2}-$ Cl_{2}); IR (neat, cm^{-1}) 3499 (br), 2955, 2859, 1720, 1651, 1463 , 1368, 1256, 1181, 1144, 1093, 1038, 986, 835, 777, 726; ${ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 6.93(\mathrm{dd}, J=16.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J$ $=16.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 3.78$ $(\mathrm{m}, 2 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 166.6,150.9,121.4,75.1,63.0$, 60.2, 42.7, 35.4, 25.8 (3C), 18.0, 14.7, 14.2, -5.6 (2C); HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}+\mathrm{Na}\right]^{+} 339.1962$, found 339.1954.
(-)-(E,4S,5S)-Ethyl 7-(Benzyloxy)-5-hydroxy-4-methylhept-2-enoate ($\mathbf{8 b}$). The crude mixture was concentrated and subjected to flash column chromatography ($20 \% \mathrm{EtOAc} / \mathrm{hexanes} \mathrm{)} \mathrm{to} \mathrm{yield}$ δ-hydroxy enoate in 96% yield as a clear, colorless oil. $R_{f}=0.23$ (4:1 hexanes/EtOAc), $[\alpha]^{24} \mathrm{D}-18.9$ (c 1.20, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat, cm^{-1}) 3486 (br), 2932, 2854, 1725, 1646, 1467, 1273, 1193, 1107, 1090, 741, 705; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.31(\mathrm{~m}, 5 \mathrm{H}), 6.95$ (dd, $J=15.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ (dd, $J=15.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51$ (s, 2H), $4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{ddd}, J=$ $12.6,6.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ (sextet, $J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, 1.11 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 166.5$, 150.7, 137.7, 128.4 (2C), 127.8, 127.7 (2C), 121.5, 74.4, 73.4, 69.4, 60.2, 42.6, 33.6, 14.6, 14.2; HRMS (ESI) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Si}+\right.$ $\mathrm{Na}]^{+}$315.1566, found 315.1568 .
(-)-(E,4S,5S)-Ethyl 5-Hydroxy-4,7-dimethyloct-2-enoate (14a). The crude mixture was concentrated and subjected to flash column chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to yield δ-hydroxy enoate in 96% yield as a clear, colorless oil. $R_{f}=0.27$ (4:1 hexanes/ EtOAc), $[\alpha]^{24}{ }_{\mathrm{D}}-43.7$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat, cm ${ }^{-1}$) 3436 (br), 2957, 2871, 1702, 1651, 1467, 1368, 1272, 1182, 1150, 1095, 1034, $989,865,729 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 6.95(\mathrm{dd}, J=15.6$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=15.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.2 \mathrm{~Hz}$, 2 H), 3.67 (ddd, $J=9.0,8.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40 (sextet, $J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{brs}, 1 \mathrm{H}), 1.35(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90$ (d, J=6.6 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 166.5,150.9$, 121.6, 72.4, 60.2, 43.4, 42.8, 24.6, 23.6, 21.6, 14.2, 13.8; HRMS (ESI) calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$237.1461, found 237.1460.
(-)-(E,4S,5S)-Ethyl 5-Hydroxy-4-methylhex-2-enoate (14d). The crude mixture was concentrated and subjected to flash column chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to yield δ-hydroxy enoate in 98% yield as a clear, colorless oil. $R_{f}=0.40$ (4:1 hexanes/ EtOAc), $[\alpha]^{24} \mathrm{D}-29.8\left(c 0.77, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR (neat, $\left.\mathrm{cm}^{-1}\right) 3410$ (br), 2971, 2850, 1716, 1650, 1273, 1183, 1155, 1093, 1034; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 6.93(\mathrm{dd}, J=15.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J$ $=15.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 2.39$ $(\mathrm{m}, 1 \mathrm{H}), 1.58(\mathrm{brs}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$ $\delta 166.5,150.4,121.8,70.5,60.2,43.7,20.4,14.4,14.2$; HRMS (ESI) calcd for $\left[\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$195.0991, found 195.1000.

General Procedure for Evans' Hemiacetal Addition. Enoate was dissolved in THF $(0.2 \mathrm{M})$ and cooled to $0^{\circ} \mathrm{C}$. To the solution were added benzaldehyde (1.1 equiv) and potassium tert-butoxide (0.15 equiv). The addition of base and aldehyde was repeated three times at 20 min intervals. The reaction was allowed to stir at $0{ }^{\circ} \mathrm{C}$ and was quenched after 1 h by adding pH 7 buffered phosphate solution. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were combined, washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The product was purified by silica gel chromatography.
(-)-Ethyl 2-((2S,4R,5R,6S)-6-(2-(tert-Butyldimethylsilyloxy)-ethyl)-5-methyl-2-phenyl-1,3-dioxan-4-yl)acetate (9a). The product was purified by silica gel chromatography eluting with 5\% $\mathrm{EtOAc} /$ hexanes to yield benzylidine acetal in 58% yield as a clear, colorless oil. $R_{f}=0.62$ (4:1 hexanes/EtOAc), $[\alpha]^{24}$ D -27.5 (c 0.50, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat, cm^{-1}) 2955, 2930, 2858, 1738, 1461, 1390, 1349, 1314, 1254, 1182, 1098, 1064, 1027, 941, 835, 776, 697; ${ }^{1}$ H NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.49(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 3 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H})$, 4.43 (ddd, $J=7.8,6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dq}, J=7.2,1.2 \mathrm{~Hz}$, 2H), 4.13 (ddd, $J=8.4,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}$,
$1 \mathrm{H}), 2.71(\mathrm{dd}, J=15.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=15.6,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{qdd}, J=7.2,2.4,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=7.2, \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 9 \mathrm{H}), 0.06(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 150\right.$ $\mathrm{MHz}) \delta 171.0,138.6,128.6,128.1$ (2C), 126.1 (2C), 101.5, 77.3, $77.1,60.5,59.2,38.1,35.8,34.6,25.9$ (3C), 18.3, 14.1, 6.2, $-5.3-$ (2C); HRMS (ESI) calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{5}+\mathrm{Na}\right]^{+} 445.2380$, found 445.2398.
(-)-Ethyl 2-((2S,4R,5R,6S)-6-(2-(Benzyloxy)ethyl)-5-methyl-2-phenyl-1,3-dioxan-4-yl)acetate (9b). The product was purified by silica gel chromatography eluting with $5 \% \mathrm{EtOAc} /$ hexanes to yield benzylidine acetal in 69% yield as a clear, colorless oil. $R_{f}=$ 0.39 (4:1 hexanes/EtOAc), $[\alpha]^{24}{ }_{\mathrm{D}}-20.5\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat, cm^{-1}) 2978, 2869, 1735, 1496, 1454, 1369, 1350, 1264, 1182, 1151, $1100,1066,1027,754,697 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.33$ $(\mathrm{m}, 10 \mathrm{H}), 5.5(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=$ $12.0, \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{ddd}, J=8.4,5.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{qd}, J=$ $7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{ddd}, J=8.4,3.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{qd}, J$ $=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{ddd}, J=13.2,9.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.59$ (ddd, $J=12.0,9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=15.6,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.47(\mathrm{dd}, J=15.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.58$ (qdd, $J=6.6,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 170.9,138.6$, $138.4,128.6,128.3$ (2C), 128.1 (2C), 127.6 (2C), 127.5, 126.1 (2C), $101.4,77.5,77.2,73.0 .66 .4,60.5,38.1,34.5,33.1,14.1,6.1$; HRMS (ESI) calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{5}+\mathrm{Na}\right]^{+} 421.1985$, found 421.2014 .
(-)-Ethyl 2-($(2 S, 4 R, 5 R, 6 S)-6-I s o b u t y l-5-m e t h y l-2-p h e n y l-1,3-$ dioxan-4-yl)acetate (15a). The product was purified by silica gel chromatography eluting with $5-10 \% \mathrm{EtOAc} / \mathrm{hexanes}$ to yield benzylidine acetal in 75% yield as a clear, colorless oil. $R_{f}=0.39$ (4:1 hexanes/EtOAc), $[\alpha]^{24}{ }_{\mathrm{D}}-7.3\left(c 0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat, $\left.\mathrm{cm}^{-1}\right)$ 2955, 2870, 1734, 1456, 1391, 1368, 1349, 1259, 1180, 1102, 1056, $1021,993,922,853,755,696 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.48$ $(\mathrm{m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{ddd}, J=7.8,5.4,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{ddd}, J=8.4,4.8,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.71(\mathrm{dd}, J=15.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=15.6,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{qdd}, J=7.2,2.4,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ 171.1, 138.7, 128.5, 128.1 (2C), 126.0 (2C), 101.4, 79.0, 77.4, 60.5, $41.5,38.1,34.6,24.3,23.0,22.6,14.2,6.0$; HRMS (ESI) calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}+\mathrm{Na}\right]^{+} 343.1879$, found 343.1880 .
(+)-Ethyl 2-((2R,4R,5S,6R)-5-Methyl-2,6-diphenyl-1,3-dioxan-4-yl)acetate (15c). The product was purified by silica gel chromatography eluting with $10 \% \mathrm{EtOAc} /$ hexanes to yield benzylidine acetal in 33% yield as a clear, colorless oil. $R_{f}=0.26$ (4:1 hexanes/ EtOAc), $[\alpha]^{24}{ }_{\mathrm{D}}+11.1\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat, $\left.\mathrm{cm}^{-1}\right) 2982$, 2165, 1734, 1497, 1452, 1348, 1260, 1183, 1135, 1100, 1052, 1027, 993, 755,$698 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37(\mathrm{~m}, 9 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.65$ (ddd, J $=7.8,6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{dd}, J=$ $15.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=15.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{qdd}, J=$ $6.6,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 170.9,140.1,138.5,128.8$, 128.1 (2C), 128.1 (2C), 127.0, 126.2 (2C), 125.3 (2C), 101.5, 81.7, $77.1,60.6,38.2,36.6,14.2,6.1$; HRMS (ESI) calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}\right.$ $+\mathrm{Na}]^{+} 363.1566$, found 363.1562.
(+)-Ethyl 2-((2S,4R,5R,6S)-5,6-Dimethyl-2-phenyl-1,3-dioxan-4-yl)acetate (15d). The product was purified by silica gel chromatography eluting with $10 \% \mathrm{EtOAc} /$ hexanes to yield benzylidine acetal in 63% yield as a clear, colorless oil. $R_{f}=0.42$ (9:1 hexanes/ EtOAc), $[\alpha]^{24}{ }_{\mathrm{D}}+21.6\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat, cm^{-1}) 3453, 3066, 3037, 2980, 2935, 2890, 2360, 1958, 1882, 1732, 1496, 1375, 1263, 1183, 1062, 918, 851, 757, 699, 650, 584; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600\right.$ $\mathrm{MHz}) \delta 7.49(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{ddd}, J=$ $7.8,6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dq}, J=7.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{dq}, J$ $=6.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=15.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=$ $15.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{qdd}, J=7.2,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 170.9,138.5,128.6,128.1$ (2C), 126.1 (2C), 101.6, 77.2, 76.4, 60.4, 37.9, 35.4, 18.5, 14.1, 5.5; HRMS (ESI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}$301.1410, found 301.1422.

Acknowledgment. We are grateful to NIH (GM63150) and NSF (CHE-0415469) for the support of our research program and NSF-EPSCoR (0314742) for a 600 MHz NMR and a LTQFT Mass Spectrometer at WVU.

Supporting Information Available: Complete experimental procedures and spectral data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO061200H

[^0]: (1) (a) Smith, C. M.; O'Doherty, G. A. Org. Lett. 2003, 5, 1959-1962 (b) Garaas, S. D.; Hunter, T. J.; O’Doherty, G. A. J. Org. Chem. 2002, 67, 2682-2685. (c) Hunter, T. J.; O'Doherty, G. A. Org. Lett. 2001, 3, 27772780. (d) Hunter, T. J.; O’Doherty, G. A. Org. Lett. 2002, 4, 4447-4450.
 (2) Hunter, T. J.; O’Doherty, G. A. Org. Lett. 2001, 3, 1049-1052.
 (3) Evans, D. A.; Gauchet-Prunet, J. A. J. Org. Chem. 1993, 58, 24462453.
 (4) For total synthesis of mycoticin A, see: (a) Poss, C. S.; Rychnovsky, S. D.; Schreiber, S. L. J. Am. Chem. Soc. 1993, 115, 3360-3361. For formal syntheses and approaches toward mycoticin A, see: (b) Smith, A. B.; Pitram, S. M. Org. Lett. 1999, 1, 2001-2004. (c) Dreher, S. D.; Leighton, J. L. J. Am. Chem. Soc. 2001, 123, 341-342. For background on oxo polyene macrolide antibiotics, see: Rychnovsky, S. D. Chem. Rev. 1995, 95, 20212040. Macrolide Antibiotics: Chemistry, Biology and Practice, 2nd ed.; Omura, S., Ed.; Academic Press: New York, 2002.

[^1]: (5) For recent approaches to γ-methyl- δ-hydroxyenoates, see: ref 4 and (a) Chen, Y.-H.; McDonald, F. E. J. Am. Chem. Soc. 2006, 128, 45684569. (b) Jain, N. F.; Takenaka, N.; Panek, J. S. J. Am. Chem. Soc. 1996, 118, 12475-12476. (c) Bluet, G.; Bazan-Tejeda, B.; Campagne, J. -M. Org. Lett. 2001, 3, 3807-3810. (d) Shirokawa, S.-i.; Kamiyama, M.; Nakamura, T.; Okada, M.; Nakazaki, A.; Hosokawa, S.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 13604-13605. (e) Roush, W. R.; Palkowitz, A. D. Ando, K. J. Am. Chem. Soc. 1990, 112, 6348-6359. (f) Rychnovsky, S. D.; Hoye, R. C. J. Am. Chem. Soc. 1994, 116, 1753-1765. (g) Schlessinger, R. H.; Li, Y. -J. J. Am. Chem. Soc. 1996, 118, 3301-3302. (h) Enders, D.; Voith, M. Synlett 2002, 29-32. (i) Denmark, S. E.; Fujimori, S. J. Am. Chem. Soc. 2005, 127, 8971-8973.
 (6) Tsuji has demonstrated a diastereoselective Pd-catalyzed reduction of trisubstituted vinyl epoxides, see: Oshima, M.; Yamazaki, H.; Shimizu, I.; Nisar, M.; Tsuji, J. J. Am. Chem. Soc. 1989, 111, 6280-6287.
 (7) (a) Tholander, J.; Carreira, E. M. Helv. Chim. Acta 2001, 84, 613622. b) Smith, A. B.; Walsh, S. P.; Frohn, M.; Duffey, M. O. Org. Lett. 2005, 7, 139-142.

[^2]: (11) This constitutes a reduction in the ratio of Pd versus phosphine to our optimized conditions for the des-methyl substrates but is in accordance with Tsuji's vinyl epoxide reduction, albeit with significantly lower catalyst loadings; see ref 6 .

[^3]: (12) The ${ }^{1} \mathrm{H}$ NMR spectrum showed a qdd multiplicity $\left(J_{\mathrm{HaHb}}=J_{\mathrm{HbHc}}\right.$ $=2.4 \mathrm{~Hz}$) for the proton at C-4, indicating the all-syn stereochemistry of both 14 and 15 , see supporting information.
 (13) It is noteworthy that the dihydroxylation of $\mathbf{1 6}$ appears to proceed with the opposite facial selectivity to the analogous (E, E)-diene, but this result is consistent with the Sharpless mnemonic; see: Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 24832547.
 (14) Shi, Y. Acc. Chem. Res. 2004, 37, 488-496.
 (15) In general, the all-equatorial diastereomer $\mathbf{2 1}$ forms with even greater stereocontrol than 15.
 (16) Presented in this Experimental Section are the general experimental procedures and spectral data for all new compounds. Complete experimental procedures and spectral data for all compounds are presented in Supporting Information.

